Generative models for discovering sparse distributed representations.
نویسندگان
چکیده
We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملIntrospection in Deep Generative Models of Sparse Data
Deep generative models such as deep latent Gaussian models (DLGMs) are powerful and popular density estimators. However, they have been applied almost exclusively to dense data such as images; DLGMs are rarely applied to sparse, high-dimensional integer data such as word counts or product ratings. One reason is that the standard training procedures find poor local optima when applied to such da...
متن کاملStatistical method for sparse coding of speech including a linear predictive model
Recently, different methods for obtaining sparse representations of a signal using dictionaries of waveforms have been studied. They are often motivated by the way the brain seems to process certain sensory signals. Algorithms have been developed using a specific criterion to choose the waveforms occurring in the representation. The waveforms are choosen from a fixed dictionary and some algorit...
متن کاملEvent Embeddings for Semantic Script Modeling
Semantic scripts is a conceptual representation which defines how events are organized into higher level activities. Practically all the previous approaches to inducing script knowledge from text relied on count-based techniques (e.g., generative models) and have not attempted to compositionally model events. In this work, we introduce a neural network model which relies on distributed composit...
متن کاملA Hierarchical Generative Model of Recurrent Object-Based Attention in the Visual Cortex
In line with recent work exploring Deep Boltzmann Machines (DBMs) as models of cortical processing, we demonstrate the potential of DBMs as models of object-based attention, combining generative principles with attentional ones. We show: (1) How inference in DBMs can be related qualitatively to theories of attentional recurrent processing in the visual cortex; (2) that deepness and topographic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 352 1358 شماره
صفحات -
تاریخ انتشار 1997